Wp/lus/Hmunramzirna
Hmunramzirna hi chhiarkawp péng lian tak pakhat a ni a, péng tam tak lian pui puia ṭhen lehchhawn a ni. Hliam/tihkeh/tihthlèr awm lova taksa herhsawihin a vawnṭhat nihphungte chhuina a ni. Entirnan: Rubber phêkah hian pentuiin rin bial la, rubber chu pawt thlër lovin pawt sàwi tâ la, a pentui chuan bial kaihsawih a la ziak reng a. Chuvangin i bial ziah khan bialna chu vawngṭha lo mah sé, inzawmna a la vawngṭha: a bial kha a rubber i pawh thlèr hma chuan a inzawm reng tho vang. I bial siamin nihphung a vawnṭhat chu inzawmna a ni, bialna erawh a vawngṭha lo thung. Chuvangin hemi chungchang bîkah chuan inzawmna kha vawnṭhat-nihphung kan ti.
Hmunramzirna chuan hetiang a entirna hmanga sawifiah theih leh entirna hmanga sawifiah theih lëm loh nihphung tam tak a zir a ni.
Lo chhuah dàn
[edit | edit source]Hmunramzirna hi leitehna chhiarkawpa zawhna ṭhenkhat chhàn tumna aṭanga lo inṭan chho a ni a; Leonhard Euler-a'n kum 1736-a K¨nigsberg Lei Pasarihte a zirbingna thuziak kha hmunramzirna thuziak mumal hmasa bera ngaih a ni.
Hmunramzirna vuah chhan
[edit | edit source]Hmunramzirna hi sap ṭawng chuan topology tih a ni a, chu thumal chu zerman thumal Topologie tih aṭanga thlâk rem a ni a, chu zerman thumal chu Grik thumal τόπος (topos), chu chu hmun tihna, leh λόγος (logos), chu chu zirna tihna, aṭanga lâk lehchhawn a ni. He zerman thumal Topologie tih hi kum 1847-a Johann Benedict Listing-a lehkhabu Vorstudien zur Topologie tiha ziah hmasak ber a ni a, amaherawhchu JB Listing-a hian ziaka a chhuah hma kum 10 vêl zetah a thukhawchang sawinaah a lo hmang tawh a ni.
A bulbal
[edit | edit source]Tunlai hmunramzirna hi khawnkhawmzirna nèn ṭhenhran hleih theih lohvin a inkai bet tlat a, hmunramzirna hi khawnkhawmzirna thukhawchang hmang lo chuan zir theih loh a ni.
A chhiarkawp
[edit | edit source]Chanchin kimchang : Hmunram |
hi khawnkhâwm lo ni ta se, hi khawnpéng chhungkua lo ni ta bawk se. (Chhungkua, khawnpéng tih te hi a phêk hrangah kan hrilhfiah ang). hian a hnuaia nihphung pathumte khu a neih chuan hmunramthlá tiin kan sawi ang:
- khawnkhawm ruak leh te hi -ah a awm ve ve.
- chhungkhung engzât pawh (chhiarsen loh tiamin) suihkhâwmin chhungkhung bawk a chhuak.
- chhungkhung bichin intawhnain chhungkhung bawk a siam chhuak.
Hetiang a chunga nihphung pathumte khi -vin a neih chuan, kan sawi lâwk angin, hi hmunramthla kan ti a, kawpchawi () hi Hmunram kan ti. A hmunramthla hi hriat sâ emaw, bituk sâ emaw a nih chuan, thil awlsam zâwk nan " hi Hmunram a ni" kan ti mai bawk ṭhin.
Entirna
[edit | edit source]- Khawnkhawm hi lo ni ta se, hi hmunramthla a ni. Hei hi a të leh mawlmang thei ang ber a nih avangin hmunram holam tiin kan ko.
- Khawnkhawm hi lo ni leh ta se, lo ni ve leh thung ta se. hi hmunramthla a ni. Chutiang zëlin.
Thulâkna
[edit | edit source]- Munkres, James R., Topology, 2nd Edition, Prentice Hall, 1975
- von Querenburg, Boto, Mengentheoretische Topologie, 3. Auflage, Springer-Verlag, 2001