Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
List of wikis
Community portal
All recent changes
Help
Manual
Navigation
Main page
Recent changes
Random page
Search
Search
English
Appearance
Donate
Create account
Log in
Personal tools
Donate
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Contents
move to sidebar
hide
Beginning
1
運算法則
2
冪函數同多項式
3
三角函數
4
指數同對數函數
5
反三角函數
6
雙曲同反雙曲函數
Toggle the table of contents
Wb
/
yue
/
微積分學/導數表
Add languages
Add links
Page
Discussion
粵語
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Print/export
Create a book
Download as PDF
Printable version
In other projects
Appearance
move to sidebar
hide
From Wikimedia Incubator
<
Wb
|
yue
Template:Wb/yue/Calculus/Top Nav
運算法則
[
edit
|
edit source
]
d
d
x
(
f
+
g
)
=
d
f
d
x
+
d
g
d
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(f+g)={\frac {\mathrm {d} f}{\mathrm {d} x}}+{\frac {\mathrm {d} g}{\mathrm {d} x}}}
d
d
x
(
c
⋅
f
)
=
c
⋅
d
f
d
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(c\cdot f)=c\cdot {\frac {\mathrm {d} f}{\mathrm {d} x}}}
d
d
x
(
f
⋅
g
)
=
f
⋅
d
g
d
x
+
g
⋅
d
f
d
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(f\cdot g)=f\cdot {\frac {\mathrm {d} g}{\mathrm {d} x}}+g\cdot {\frac {\mathrm {d} f}{\mathrm {d} x}}}
d
d
x
(
f
g
)
=
−
f
⋅
d
g
d
x
+
g
⋅
d
f
d
x
g
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\left({\frac {f}{g}}\right)={\dfrac {-f\cdot {\dfrac {\mathrm {d} g}{dx}}+g\cdot {\dfrac {\mathrm {d} f}{\mathrm {d} x}}}{g^{2}}}}
d
d
x
[
f
(
g
(
x
)
)
]
=
d
f
d
g
⋅
d
g
d
x
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}[f(g(x))]={\frac {\mathrm {d} f}{\mathrm {d} g}}\cdot {\frac {\mathrm {d} g}{\mathrm {d} x}}=f'(g(x))\cdot g'(x)}
d
n
d
x
n
f
(
x
)
g
(
x
)
=
∑
i
=
0
n
(
n
i
)
f
(
n
−
i
)
(
x
)
g
(
i
)
(
x
)
{\displaystyle {\frac {\mathrm {d} ^{n}}{\mathrm {d} x^{n}}}f(x)g(x)=\sum _{i=0}^{n}\left({\begin{matrix}n\\i\end{matrix}}\right)f^{(n-i)}(x)g^{(i)}(x)}
d
d
x
(
1
f
)
=
−
f
′
f
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\left({\frac {1}{f}}\right)=-{\frac {f'}{f^{2}}}}
冪函數同多項式
[
edit
|
edit source
]
d
d
x
(
c
)
=
0
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(c)=0}
d
d
x
x
=
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}x=1}
d
d
x
x
n
=
n
x
n
−
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}x^{n}=nx^{n-1}}
d
d
x
x
=
1
2
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\sqrt {x}}={\frac {1}{2{\sqrt {x}}}}}
d
d
x
1
x
=
−
1
x
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\frac {1}{x}}=-{\frac {1}{x^{2}}}}
d
d
x
(
c
n
x
n
+
c
n
−
1
x
n
−
1
+
c
n
−
2
x
n
−
2
+
⋯
+
c
2
x
2
+
c
1
x
+
c
0
)
=
n
c
n
x
n
−
1
+
(
n
−
1
)
c
n
−
1
x
n
−
2
+
(
n
−
2
)
c
n
−
2
x
n
−
3
+
⋯
+
2
c
2
x
+
c
1
{\displaystyle {{\frac {\mathrm {d} }{\mathrm {d} x}}(c_{n}x^{n}+c_{n-1}x^{n-1}+c_{n-2}x^{n-2}+\cdots +c_{2}x^{2}+c_{1}x+c_{0})=nc_{n}x^{n-1}+(n-1)c_{n-1}x^{n-2}+(n-2)c_{n-2}x^{n-3}+\cdots +2c_{2}x+c_{1}}}
三角函數
[
edit
|
edit source
]
d
d
x
sin
(
x
)
=
cos
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sin(x)=\cos(x)}
d
d
x
cos
(
x
)
=
−
sin
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cos(x)=-\sin(x)}
d
d
x
tan
(
x
)
=
sec
2
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\tan(x)=\sec ^{2}(x)}
d
d
x
cot
(
x
)
=
−
csc
2
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cot(x)=-\csc ^{2}(x)}
d
d
x
sec
(
x
)
=
sec
(
x
)
tan
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sec(x)=\sec(x)\tan(x)}
d
d
x
csc
(
x
)
=
−
csc
(
x
)
cot
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\csc(x)=-\csc(x)\cot(x)}
指數同對數函數
[
edit
|
edit source
]
d
d
x
e
x
=
e
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}e^{x}=e^{x}}
d
d
x
a
x
=
a
x
ln
(
a
)
a
>
0
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}a^{x}=a^{x}\ln(a)\qquad a>0}
d
d
x
ln
(
x
)
=
1
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\ln(x)={\frac {1}{x}}}
d
d
x
log
a
(
x
)
=
1
x
ln
(
a
)
a
>
0
,
a
≠
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\log _{a}(x)={\frac {1}{x\ln(a)}}\qquad a>0\ ,\ a\neq 1}
d
d
x
(
f
g
)
=
d
d
x
(
e
g
ln
(
f
)
)
=
f
g
(
f
′
g
f
+
g
′
ln
(
f
)
)
f
>
0
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(f^{g})={\frac {\mathrm {d} }{\mathrm {d} x}}\left(e^{g\ln(f)}\right)=f^{g}\left(f'{\frac {g}{f}}+g'\ln(f)\right)\qquad f>0}
d
d
x
(
c
f
)
=
d
d
x
(
e
f
ln
(
c
)
)
=
c
f
ln
(
c
)
⋅
f
′
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}(c^{f})={\frac {\mathrm {d} }{\mathrm {d} x}}\left(e^{f\ln(c)}\right)=c^{f}\ln(c)\cdot f'}
反三角函數
[
edit
|
edit source
]
d
d
x
arcsin
(
x
)
=
1
1
−
x
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
arccos
(
x
)
=
−
1
1
−
x
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\arccos(x)=-{\frac {1}{\sqrt {1-x^{2}}}}}
d
d
x
arctan
(
x
)
=
1
x
2
+
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\arctan(x)={\frac {1}{x^{2}+1}}}
d
d
x
arccot
(
x
)
=
−
1
x
2
+
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccot}(x)=-{\frac {1}{x^{2}+1}}}
d
d
x
arcsec
(
x
)
=
1
|
x
|
x
2
−
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arcsec}(x)={\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
d
d
x
arccsc
(
x
)
=
−
1
|
x
|
x
2
−
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccsc}(x)=-{\frac {1}{|x|{\sqrt {x^{2}-1}}}}}
雙曲同反雙曲函數
[
edit
|
edit source
]
d
d
x
sinh
(
x
)
=
cosh
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sinh(x)=\cosh(x)}
d
d
x
cosh
(
x
)
=
sinh
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cosh(x)=\sinh(x)}
d
d
x
tanh
(
x
)
=
s
e
c
h
2
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\tanh(x)={\rm {sech}}^{2}(x)}
d
d
x
s
e
c
h
(
x
)
=
−
tanh
(
x
)
s
e
c
h
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {sech}}(x)=-\tanh(x){\rm {sech}}(x)}
d
d
x
coth
(
x
)
=
−
c
s
c
h
2
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\coth(x)=-{\rm {csch}}^{2}(x)}
d
d
x
c
s
c
h
(
x
)
=
−
coth
(
x
)
c
s
c
h
(
x
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {csch}}(x)=-\coth(x){\rm {csch}}(x)}
d
d
x
a
r
s
i
n
h
(
x
)
=
1
1
+
x
2
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {arsinh}}(x)={\frac {1}{\sqrt {1+x^{2}}}}}
d
d
x
a
r
c
o
s
h
(
x
)
=
1
x
2
−
1
,
x
>
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {arcosh}}(x)={\frac {1}{\sqrt {x^{2}-1}}}\ ,\ x>1}
d
d
x
a
r
t
a
n
h
(
x
)
=
1
1
−
x
2
,
|
x
|
<
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {artanh}}(x)={\frac {1}{1-x^{2}}}\ ,\ |x|<1}
d
d
x
a
r
c
s
c
h
(
x
)
=
−
1
|
x
|
1
+
x
2
,
x
≠
0
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {arcsch}}(x)=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}\ ,\ x\neq 0}
d
d
x
a
r
s
e
c
h
(
x
)
=
−
1
x
1
−
x
2
,
0
<
x
<
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {arsech}}(x)=-{\frac {1}{x{\sqrt {1-x^{2}}}}}\ ,\ 0<x<1}
d
d
x
a
r
c
o
t
h
(
x
)
=
1
1
−
x
2
,
|
x
|
>
1
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}{\rm {arcoth}}(x)={\frac {1}{1-x^{2}}}\ ,\ |x|>1}
Template:Wb/yue/Calculus/Top Nav
Template:Wb/yue/Calculus/TOC
Category
:
Wb/yue